

Air quality in Belgium

Charlotte Vanpoucke

Wetenschappelijk medewerker (VMM) bij de Intergewestelijke Cel voor het Leefmilieu (IRCEL)

Belgian national debate on carbon pricing – Brussels, 24/11/2017

AIR QUALITY IN BELGIUM

Averaging time	1-hour		Max 8-hour		24-hour		Year	
	EU	WHO	EU	WHO	EU	WHO	EU	WHO
SO2	\odot	٢			0	8		
NO ₂	٢						8	8
PM10					٢	8	0	8
PM _{2.5}			_			8	0	8
03	3		۲	8	9 9	8	2 6	

- Most concentrations of air pollutants in Belgium are below EU limits.
- WHO targets are generally not met in Belgium.
- In a long-term perspective, the EU aims to respect air pollution values set by the WHO.

-> The concentrations of PM2.5 and NO2 in Belgium were respectively responsible for more than 8000 and more than 1800 premature deaths in Belgium in 2014 (EEA, 2017).

-> The health costs of air pollution (i.a. the loss of 2.5 mio workdays/year) amount every year to 8 billion euro in Belgium (European Commission, 2017).

→ Air quality has improved over the last years, but concentrations of air pollutants still have a significant health and economic impact in Belgium.

AIR QUALITY IN BELGIUM

Emission and concentration trend of PM10 (relative from 2000)

Concentrations do not necessarily follow emission trend:

- emissions are (mostly) calculated (<> measured)
- primary secundary PM10
- Transboundary air pollution
- Equal emissions does not lead to equal concentrations (meteo)

AIR QUALITY IN BELGIUM

Share of wood burning in PM10 concentrations in Flanders (tracer = levoglucosan)

- Annual average: $2 \mu g/m^3$ or 7% of PM10
- Winter: 10% (6x summer)
- Locally up to 30%!!

(source: Inschatting van de bijdrage van houtverbranding door burgers aan luchtverontreiniging in Vlaanderen, VMM 2017)

50 gram *primair* PM10 =

4 kg hout (open haard)

13 kg hout (moderne houtstoof)

40 kg pellets (pelletketel)

300 km (vrachtwagen)

600 km (bestelwagen)

1100 km (diesel auto)

EMISSIONS IN BELGIUM

6

EMISSIONS IN BELGIUM

Evolution of the emissions from residential combustion (from 1990, in % - Source: NEC 2017)

- While emissions from domestic heating in Belgium follow a downward trend for some pollutants (SO2), other pollutants are stable or show an increasing trend (PM2.5, PM10, BC).
- Emissions of air pollutants from domestic heating are closely related to the weather conditions.

Revised NEC Directive

2016/2284/EG (14/12/2016)

- Reduction targets Belgium 2020 and 2030
 - % to 2005
 - 2020: Göteborgprotocol
 - PM2,5 added
- 2025: trajectory 2020-2030

Emissions in kt/year

	2005	2010 NEC	2015	2020	2030
NOx	305	176 (-45%)	185 (-39%)	-41%	-59%
SO2	142	99 (-30%)	43 (-70%)	-43%	-66%
PM2,5	36		27 (-25%)	-20%	-39%
voc	148	139 (-22%)	90 (-39%)	-21%	-35%
NH3	68	74 (+9%)	66 (-4%)	-2%	-13%

Relevance of the issue for the carbon pricing debate (1/3)

Origin of the Belgian emissions of air pollutants (Source: NEC 2017)

- In Belgium, the non-ETS sectors are significant contributors to the emissions of air pollutants.
- Except for SOx, the transport and the residential sectors are two major sources of air pollution (+ 50%).

Relevance of the issue for the carbon pricing debate (2/3)

Share of fuels in residential combustion emissions in Belgium (Source: NEC 2017)

- The use of biomass for domestic heating is for most pollutants the major source of emissions in the residentail combustion sector in Belgium.
- If it leads to an increase of biomass for domestic heating, the implementation of a carbon price could have a negative impact on the emissions of air pollutants from the Belgian residential combustion sector.

Source: EMEP/EEA air pollutant emission inventory guidebook (2016)

KEY MESSAGES

- Even though air quality has improved over the past years, the concentration of air pollutants still has a significant health and economic impact in Belgium.
- A large share of the air pollutants emitted in our country originate from non-ETS sectors.
- Put together, transport and domestic heating represent more than half of the emissions for most air pollutants.
- The use of biomass is a major source of most air pollutants in de residential combustion sector, especially for particulate matter, PAH's and dioxins.
- An emission reduction of air pollutants in Belgium through a carbon tax will not have the same impact on the concentrations of all pollutants.
- Air pollution and climate change objectives are not always aligned.
- If a carbon price leads to an increased use of biomass in the residential sector, this could increase emissions of particulate matter and other pollutants in Belgium.